Searching for parton saturation at FCC-eh, LHeC and EIC

Open questions and path forward

Anna Stasto

Past, present and future of DIS

US EIC

energy
$$\sqrt{s} \simeq 20-140~{\rm GeV}$$

luminosity $10^{34} {\rm \ cm^{-2} s^{-1}}$

wide range of nuclei: p,d,3He,4He,C,Ca,Cu,Au

polarization of electron and nucleon beams

LHeC /FCC-ep (CERN)

energy

$$\sqrt{s} \simeq 1 - 5 \text{ TeV}$$

luminosity

$$10^{34} \text{ cm}^{-2} \text{s}^{-1}$$

electron proton/ion: p,Pb

Physics at high densities at the EIC

2012: EIC White Paper

Chapter on high gluon density in QCD

3	$Th\epsilon$	e Nucl	eus: A Laboratory for QCD	
	3.1	Intro	duction	
	3.2	3.2 Physics of High Gluon Densities in Nuclei		
		3.2.1	Gluon Saturation: a New Regime of QCD	
			Non-linear Evolution	
			Classical Gluon Fields and the Nuclear "Oomph" Factor	
			Map of High Energy QCD and the Saturation Scale	
			Nuclear Structure Functions	
			Diffractive Physics	
		3.2.2	Key Measurements	
			Structure Functions	
			Di-Hadron Correlations	
			Measurements of Diffractive Events	

Department of Energy

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

JANUARY 9, 2020

2020/2021 Effort towards the Yellow Report: Physics/Detector development.

Physics at high densities at the LHeC

2012: LHeC Conceptual Design Study

LHeC: Large Hadron electron Collider. CERN Project to collide electrons with LHC proton/ion beam

)	Pny	sics at	High Parton Densities
	6.1	Physic	es at small x
		6.1.1	High energy and density regime of QCD
		6.1.2	Status following HERA data
		6.1.3	Low- x physics perspectives at the LHC
		6.1.4	Nuclear targets
	6.2	Prospe	ects at the LHeC
		6.2.1	Strategy: decreasing \boldsymbol{x} and increasing \boldsymbol{A}
		6.2.2	Inclusive measurements
		6.2.3	Exclusive Production
		6.2.4	Inclusive diffraction
		6.2.5	Jet and multi-jet observables, parton dynamics and fragmentation
		6.2.6	Implications for ultra-high energy neutrino interactions and detection

2020 update of the CDR to be released soon (July 2020)

Transition regime to high parton density

x and A dependent saturation scale.

$$\frac{A \times xg(x,Q_s^2)}{\pi A^{2/3}} \times \frac{\alpha_s(Q_s^2)}{Q_s^2} \sim 1$$

$$Q_s^2 \sim A^{1/3} Q_0^2 \left(\frac{1}{x}\right)^{\lambda}$$

Saturation boundary needs to be determined by experiment

HERA data consistent with very low Q_S Partonic/perturbative interpretation uncertain

$$Q_s^2 \le 1 \text{ GeV}^2$$

Gluon density can increase by: decreasing x and/or increasing A

Strategy for making target more 'black'

Saturation scale: $Q_s^2 \sim A^{1/3}Q_0^2 \left(\frac{1}{x}\right)^{\lambda}$

Two-pronged approach

eA scattering
Many sources
overlapping in impact
parameter.

EIC sensitivity to saturation scale

$$Q_s^2 \sim A^{1/3} Q_0^2 \left(\frac{1}{x}\right)^{\lambda}$$

EIC sensitive to perturbative saturation region in scattering with heavy nuclei.

Shown: median b-impact parameter.

Exclusive processes can be sensitive to different b.

LHeC/FCC-eh kinematics

LHeC/FCC-eh: Small x machines. Obvious extension of the kinematic reach at FCC-(electron-hadron)

Higher electron energy reduces small x region unless detector acceptance is larger.

Similarly for eA mode: very small x domain in eA.

LHeC constraints on gluon

Pseudodata

Constraints at both low and large x

Idea: generate pseudodata with/without saturation, fit with DGLAP and look for differences.

LHeC pseudodata: use two setups

- DGLAP only (PDF4LHC15)
- DGLAP for x>10⁻⁴ and saturation model for x<10⁻⁴ (Golec-Biernat, Sapeta)

Method: Abdul Khalek, Bailey, Gao, Harland-Lang, Rojo. Hessian profiling.

Generated 500 independent sets of LHeC NC pseudodata with random fluctuations determined by (projected) experimental uncertainties.

Distribution of pre-fit and post-fit values of

$$\chi^2/n_{\rm dat}$$

for 500 data sets.

Fit done with model used to generate pseudodata: very good agreement obviously...

LHeC data with saturation:

Pre-fit distribution: mean around 6.5

Post-fit distribution: mean much lower 1.3 Seems like DGLAP can absorb saturation effects

But how much?

Zoom into post-fit distribution

Can still tell apart between DGLAP and saturation pseudodata

DGLAP cannot completely fit away saturation effects, if they are present at LHeC below x<10⁻⁴

Comments: will strongly depend on model and range of x and Q where the modifications are present

More pronounced at FCC

Can perform similar exercise with nuclear structure functions

Other observables: charm and longitudinal structure function

Longitudinal structure function

$$\frac{Q^4x}{2\pi\alpha^2Y_+} \cdot \frac{d^2\sigma}{dxdQ^2} = \sigma_r \simeq F_2(x, Q^2) - f(y) \cdot F_L(x, Q^2) = F_2 \cdot \left(1 - f(y) \frac{R}{1 + R}\right) \qquad y = Q^2/sx_1$$

Challenging experimentally: vary energy,

constraint on the gluon

Longitudinal structure function: important

F_L small, systematics

Luminosity: 10, 1, 1 fb⁻¹

Correlated and uncorrelated systematics

Structure functions at EIC

EIC: structure function simulations in eA

Pseudodata simulated with EPS09, very high precision data for eA

- Nonlinear evolution has smaller range of uncertainty. Robustness of the solution to nonlinear equation.
- Large dependence on the initial conditions for the linear evolution leads to large uncertainty.

Diffraction

$$\xi \equiv x_{IP} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$

$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

$$x_{Bj} = x_{IP}\beta$$

momentum fraction of the Pomeron w.r.t hadron

momentum fraction of parton w.r.t Pomeron

Theoretical description of such process is in terms color-less exchange : the Pomeron.

For large scales the QCD factorization was shown.

What can be done at an EIC/LHeC/FCC-eh?

- Tests of factorization of diffractive parton distributions (ep and eA).
- Sensitivity and relation to saturation physics (smaller scales involved).
- Study relation between diffraction in ep and shadowing in eA.

Phase space: LHeC, FCC-eh,EIC

For the EIC: better than HERA coverage of the large x region

EIC phase space: (β, Q^2) fixed ξ

$$\xi = x_{IP}$$

$$E_p = 275 \text{ GeV}, E_e = 18 \text{ GeV}, y_{max} = 0.96$$

LHeC phase space: (β,Q²) fixed ξ

EIC: Pomeron/Reggeon decomposition

Pomeron, Reggeon, F_2 , F_L components of σ_{red}

- f R contribution dominates at high ξ
- $lue{}$ Significant $F_{
 m L}$ component

$$\sigma_{\rm red} = F_2 - Y_{\rm L}(y) F_{\rm L}$$

$$Y_{\rm L}(y) = \frac{y^2}{1 + (1 - y)^2}$$

At fixed (x, Q^2) , $Y_L(y)$ scales stronger than $\sim 1/s^2$, e.g. $Y_L(0.9/5)/Y_L(0.9) = 0.024$

 $x_L \lesssim 0.6$ required for the determination of subleading "Reggeon" term. Some intermediate beam energy settings needed for F_L measurements.

Higher twists in diffraction

Motyka, Sadzikowski, Slominski

- Diffractive data at HERA cannot be described by DGLAP at low Q²
- Higher twists 4 and 6 evaluated from the dipole saturation model
- Improves the quality of the fit significantly
- Largest effect at low Q² and small ξ
- Indication for large higher twists
- Questions for EIC/LHeC/FCC-eh: how would that change with different A and energy?

Exclusive diffraction

Unitarity limit: N(x,r,b) = 1

"b-Sat" dipole scattering amplitude with $r = 1 \text{ GeV}^{-1}$

1.0

0.8

- Exclusive diffractive production of VM: extracting the dipole amplitude and GPDs
- Suitable process for estimating the 'blackness' of the interaction.
- t-dependence : impact parameter profile

Central black region growing with decrease of x.

W (GeV)

Large momentum transfer t probes small impact parameter where the density of interaction region is most dense.

HERA data compared with nonlinear evolution simulations

Exclusive diffraction on nuclei

Possibility of using the same principle to learn about the gluon distribution in the nucleus.

Possible nuclear resonances at small t?

t-dependence: for nuclei dips. Position depends on model (sat no sat) Challenges: need to distinguish between coherent and incoherent diffraction. Need dedicated instrumentation, zero degree calorimeter.

Dips in t-profile for VM production

Armesto-Rezaeian

- t-dependence is a Fourier transform of the impact parameter profile
- characteristic dips as a feature of saturation
- position of dips depends on energy and scale
- within the LHeC sensitive t-range

Summary

- Novel QCD phenomena expected at high parton density.
- Can reach this regime either by increasing A or decreasing x.
- Proton and nuclear structure functions and PDFs can provide the test of these effects.
 Quantifying possible deviations from DGLAP evolution.
- F_L measurement would greatly improve the prospects of constraining higher twists and saturation. Importance of heavy quark measurements.
- Diffraction, both inclusive and exclusive offers unique window to saturation physics.
 Relation between diffraction and shadowing. Inclusive data at HERA point to higher twists in this process. EIC can disentangle Reggeon/Pomeron contribution.
- Exclusive diffraction on of the best ways to perform the nucleon/nucleus tomography. VM elastic diffractive production; dips in t as a sign of parton saturation.
- Incoherent diffraction as a probe of the fluctuation of the gluon density.
- Azimuthal (de)correlations, sensitivity to the intrinsic transverse momentum of the gluon in the low x (or high A) regime. Ridge, collective phenomena at ep/eA?
- Importance of low x dynamics to ultrahigh cosmic ray and neutrino physics (Auger, ICECUBE)